

DOI:10.14923/transcomj.2020BLL0022 早期公開日:2021/02/16

本PDFは,早期公開版である.本論文を引用する場合には, 電子情報通信学会和文論文誌投稿のしおり(通信ソサイエ ティ)の「8.早期公開」を参照すること.

THE COMMUNICATIONS SOCIETY THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS

研究速報

ガススマートメーター搭載用電磁結合給電型アンテナ の検討 佐藤 シャチ^{†a}(学生員) 佐藤 弘康[†](正員) 陳 強[†](正員)土屋 創太^{††}(非会員)遠藤 秀樹^{††} (非会員)

Study on Electromagnetic Coupling Feeding Antenna For Gas Smart Meter

Shachi SATO†), Student Member, Hiroyasu SATO†, Member, Qiang CHEN†, Member, Sota TSUCHIYA††, Non-Member and Hideki ENDO††, Non-Member

†† 東京ガス株式会社 基盤技術部 先端エネルギーシステム研究所,神奈 川県

Tokyo Gas Co., Ltd., 1-7-7 Suehiro, Tsurumi-ku, Yokohama-si Kanagawa, 230-0045 Japan

a) E-mail: sato-s@ecei.tohoku.ac.jp

あらまし ガススマートメーター用920 MHz帯電磁 結合給電型アンテナの設計を行っている.アンテナは, 長さλ/4以下のパッチ型給電素子が,半波長程度の パッチ型放射素子を電磁結合により励振する構造を有 している.パッチ型放射素子をガススマートメーター の樹脂カバーに装着することを想定し,カバーの面積 と高さを利用したアンテナの高利得化および設計法に ついて述べている.

キーワードWi-SUN,電磁結合,アンテナ,放射 素子,Lプローブ給電,スマートメーター

1. まえがき

近年のIoT(Internet of Things)化の一環としてガスや 水道などの検針データを920 MHz帯の無線通信で収集 する技術(Wi-SUN)が注目されている.通常マンショ ンなどの集合住宅にはパイプシャフトと呼ばれるガス 管などを上下階に通すためのスペースがあり,パイプ シャフト内のガス管に装着して検針を行うガススマー トメーターの開発が検討されている.マンションなど の集合住宅に設置された検針メーターとデータ収集端 末間で無線通信を行うだけでなく,検針メーター間の 通信も検討されている.

想定されているガススマートメーターの構造を図 1 に示す.新型ガススマートメーターの筐体のサイズは 920 MHz 帯において長さ λ 2,幅 λ 4 程度を想定して いる.ガススマートメーター内部にはガス流量を計測 する部品やそれらを駆動する回路基板,液晶ディスプ レイなどが配置されており,アンテナを配置するス ペースには制約がある.回路基板の長さは λ 4 程度で

図1 想定されているガススマートメーターの構造 Figure 1 Assumed structure of Gas smart meter.

あり、この回路基板上にアンテナを搭載する場合は逆 F型アンテナをはじめとする小形アンテナが必要となり、高利得化は容易ではない.ガススマートメーター 筐体には取り外しが容易な樹脂製フロントカバーが装 着されており、これにパッチ型放射素子を装着し て電磁結合により励振できれば、筐体の大きさを有効 に利用した高利得なアンテナが期待できる.

電磁結合を用いたアンテナとしては、マイクロスト リップ線路によりスロットアンテナを励振する構造[1, 2],給電パッチ素子上部にパッチ型放射素子を配置し、 2共振あるいは広帯域を得るスタックパッチアンテナ がよく知られている[3].パッチ型放射素子を励振す る方法としてLプローブ型給電法も提案されている[4]. 一般に、Lプローブ長はプローブ単体で共振可能な $\lambda/4 - \lambda/2 程度で設計されており[5-8]、プローブ長が<math>\lambda/4$ 以下となる場合は少ない.以下、本論文では「パッ チ型放射素子」を単に「放射素子」と呼ぶ.

本論文では、長さが λ/4 以下の小形パッチ型給電素 子が、半波長程度の放射素子を励振する 920 MHz 帯 電磁結合給電型パッチアンテナを提案する.給電素子 の幅が広いパッチ型給電素子を用いることで、給電素 子長が λ/4 以下であっても 50Ωへのインピーダンス整 合が可能であり、カバーへの放射素子の実装を目指し た放射素子高の増加が可能であることを示す.また、 本論文では、図 1 に示した実際のガススマートメー ター用アンテナの基本的な設計指針を得ることを目的 とし、筐体を簡略化した平面状グランド板とするとと もに、アンテナの設計法について検討する.

[†] 東北大学大学院工学研究科, 宮城県 Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki Aoba, Aoba-ku, Sendai-si Miyagi, 980-8579 Japan

表 1 基準構造の寸法(設計周波数 920 MHz) Table 1 Dimensions of electromagnetic coupling feeding antenna designed for 920 MHz band.

Parameters	[mm]
Width of ground W_G	260
Length of ground L_G	260
Width of parasitic patch W_c	50
Length of parasitic patch L_c	130
Height of parasitic patch h_c	25
Width of feeding patch W_p	50
Length of feeding patch L_p	20
Height of feeding patch h_p	10

2. 電磁結合給電型アンテナの設計

電磁結合給電型アンテナの構造および設計周波数を 920 MHz としたときの基準構造の寸法を図 2 と表 1 にそれぞれ示す.給電素子として幅 W_G ,長さ L_G のグ ランド板の端部に,幅 W_p ,長さ L_p ,高さ h_p の平面状 給電素子を設け,その上部に長さ L_c ,幅 W_c ,高さ h_c の放射素子を配置する.このアンテナは,波長に対し

図 3 hcを変化させたときのアンテナ特性. (a) 入力インピー ダンス, (b) 反射係数 Figure 3 Antenna characteristics when hc is changed. (a) Input

impedance. (b) Refection coefficient.

て小形な給電素子で半波長程度の大きさを持つ放射素 子を励振する構造を有している.ここで,給電点は $(x, y) = (L_{G}/2, W_{G}/2)$ とする.アンテナの構造パラメー タを変化させたときの特性を FDTD 法による数値解 析により求めた.

2.1 放射素子の高さ hc に対する変化

図 2 中に示す寸法のうち, 放射素子の高さ hc を変 化させた場合について, 入力インピーダンス Zin およ び反射係数 S11 を図 3(a), (b)にそれぞれ示す. 図 3(a)中の実線は入力抵抗 Rin, 破線は入力リアクタンス Xin をそれぞれ表したものである. hc が小さくなり給 電素子に近づくにつれて入力インピーダンスの大きさ |Zin|が大きくなっていることがわかる. 放射素子の高 さ hc が小さくなり給電素子と放射素子の結合が強く なるにつれ 920 MHz における Xin はインダクティブに 変化し, キャパシティブであった Xin に対して強い反

図 4 L_cを変化させたときのアンテナ特性. (a) 入力インピー ダンス, (b) 反射係数 Figure 4 Antenna characteristics when L_c is changed. (a) Input impedance. (b) Refection coefficient.

共振が現れるとともに R_m も大きくなった.以上の結 果から,放射素子の高さ h_c を変化させて入力抵抗お よび入力リアクタンスを調整することが可能であるこ とがわかった.

2.2 放射素子の長さ L_cに対する変化

表1 中に示す寸法のうち,放射素子の長さ L_cを変 化させた場合について,入力インピーダンス Z_{in} およ び反射係数 S11 を図 4(a),(b)にそれぞれ示す.L_c が 大きくなるにつれて共振周波数が低周波側にシフトし た.この結果から,放射素子の長さ L_cを変化させて 共振周波数を調整できることがわかった.

2.3 アンテナの体積に対する利得

電磁結合給電型アンテナでは, 放射素子の高さ hc に対する制約は小さいため高さhcを大きくすること

表	表1から変化させた構造パラメータと動作利得	
Table 1	Dimensions of antenna changed from Table 1 and actual gair	ı.

Model	Parameters					
	$h_p[mm]$	<i>h</i> _c [mm]	$L_c[mm]$	V[mm ³]	Actual gain (E_{θ}) [dBi]	
Model A	2	8	148	59200	7.9	
Model B	10	22	130	143000	8.6	
Model C	15	29	125	181250	8.7	

が可能である.一方,高さ h_c を変化させると入力イ ンピーダンスの大きさ $|Z_m|$ も変化するため,前節で得 られた知見を利用し, h_c の変化に応じて給電素子の高 さ h_p も変化させて整合を図り,各構造の指向性利得 を評価した.表1から変化させた構造パラメータと動 作利得を表2に示す.給電素子の高さ $h_p=2,10,15$ mm の場合について,動作利得7.9 dBi, 8.6 dBi, 8.7 dBi が得られ,体積の増加とともに利得が増加する結果が 得られた.しかしながら,利得を増加させるために h_p を増加すると入力リアクタンスのキャパシティブ性 が強くなり 50 Ω への整合が困難となるため,体積の 増加による利得の増加には限界があると考えられる.

以上の解析結果をもとに得られた電磁結合給電型ア ンテナの設計指針を以下に列挙する.

- ・放射素子の高さ hcを変化させて入力抵抗 Rin を 50 Ω
 に調整可能
- ・放射素子の長さL。を変化させて設計周波数を共振 周波数に調整可能
- ・放射素子の高さ hc を増加させて高利得化が可能.
 整合のためには給電素子の高さ hp の増加が必要.

2.4 パッチ型給電とLプローブ型給電の比較

L プローブ給電法を用いる場合,L プローブ長は λ /4 にされることが多い[2-4]. 設計周波数は 920 MHz の場合 λ /4 は約 80 mm であるが,ガススマートメー ター内部のアンテナを含む回路基板には寸法の制約が あり,L プローブ長を λ /4 確保することが困難な場合 が想定される.そこで,給電素子長が L_p = 20 mm (λ /16)の場合について検討した.ここで,給電素子の 幅 W_p = 50 mm の場合をパッチ型給電, W_p = 1 mm の 場合をL プローブ型給電とした.入力抵抗 R_{in} ,入力 リアクタンス X_{in} を図 5(a), (b)に,反射係数 S11 を図 6 にそれぞれ示す.図 5(b)には放射素子が無い場合の

図 5 W_p を変化させたときの入力インピーダンス. (a) 抵抗, (b) リアクタンス. Figure 5 Input impedance when W_p is changed. (a) Resistance, (b) Reactance.

入力リアクタンス X_{in} も示している. パッチ型給電, L プローブ型給電いずれの場合も入力抵抗 R_{in} に大き な差はないが,入力リアクタンス X_{in} は大きく異なっ ている. L プローブ型給電では強いキャパシティブ性 を有する入力リアクタンスが観測された. 一方,パッ チ型給電素子の場合は L プローブ型給電に比べ結合 部の面積が増加しキャパシティブ性が弱くなり,反共 振において整合が取れた.

以上の結果から、L プローブ型給電は L_p が $\lambda/4$ 確保 できる場合には有効であるが、寸法の制約上 $\lambda/4$ 以下 とする必要がある場合は整合が困難となり、パッチ型 給電が有効と考えられる.

図 6 W_p を変化させたときの反射係数 Figure 6 Reflection coefficient when W_p is changed.

4. 実験的検討

設計の妥当性を確認するため,表2のモデルCを 試作してインピーダンス特性および放射特性を実験に より評価した. 試作したアンテナの写真を図7に示 す.

スミスチャートで表示した入力インピーダンス Zin を図8に示す. 図中の実線は実験値, 破線は解析の結 果をそれぞれ表したものである. 解析結果と測定結果 は概ね一致し,いずれも 920 MHz 付近で整合した. 920 MHz における動作利得パターンを図 9 に示す. 図中の実線は実験値,破線は解析の結果をそれぞれ表 したものである. 解析結果と測定結果は良く一致した. 最大放射方向は正面方向の 0=90 deg からわずかにチ ルトしているが、これはグランド板サイズが小さく+z 方向において放射素子と同程度であったためと考えら れる.最大放射方向における動作利得の測定値,解析 値それぞれ 8.2 dBi, 8.7 dBi が得られ, 測定値が約 0.5 dB 低い値が得られた. これは解析において導体損失 を考慮していないためと考えられる.図1に示した回 路基板にアンテナを実装することを考えた場合はアン テナの小形化が必要となり利得が低下するが、カバー の放射素子を電磁結合により給電することによって高 利得が得られることを示した.

図7 電磁結合給電型アンテナの写真(表 2, Model C) Figure 7 Photograph of electromagnetic coupling feeding antenna. (Table 2, Model C)

Figure 8 Measured and calculated input Impedances of Model C, Table 2. Solid line: Measured. Dashed line: Calculated.

図 9 表 2, モデル C の動作利得パターン(実線:測定値,破線:計算値)

Figure 9 Measured and calculated actual gain pattern of, Model C, Table 2. Solid line: Measured. Dashed line: Calculated.

5. むすび

ガススマートメーター用 920 MHz 帯電磁結合給電 型アンテナを提案し,数値解析を用いて設計指針を導 出するとともに実験により妥当性を確認した.本論文 ではパッチ型放射素子をガススマートメーターの樹脂 カバーに装着して高利得化を図ることを想定している が,例えば携帯電話等,回路基板におけるアンテナの 占有面積に制約がある場合においても,カバーに放射 素子を設けることで利得の改善が期待できる方法と考 えられる.

文 献

- [1] Wireless Smart Utility Network (Wi-SUN), https://wi-sun.org/
- [2] D. M. Pozar, "Microstrip antennas," in Proceedings of the IEEE, vol. 80, no. 1, pp. 79-91, Jan. 1992.
- [3] 山本学, "プリントアンテナの基礎と実際,"電子情報通信 学会論文誌 B, vol. J97-B, no.9, pp.714-730, 2014.
- [4] J. T. Aberle, D. M. Pozar and J. Manges, "Phased arrays of probe-fed stacked microstrip patches," in IEEE Transactions on Antennas and Propagation, vol. 42, no. 7, pp. 920-927, July 1994.
- [5] Yong-Xin Guo, Kwai-Man Luk, Kai-Fong Lee, "L-Probe Fed Thick-Substrate Patch Antenna Mounted on a Finite Ground Plane," IEEE Trans. Antennas Propag., vol.51, no.8, Aug. 2003.
- [6] K.M. Luk, Y.X. Guo, K.F. Lee, Y.L. Chow, "L-probe proximity fed U-slot patch antenna," Electron. Lett. vol.34, no.19, September 1998.
- [7] 田口光雄, "不平衡給電超低姿勢逆 L アンテナで構成され た高機能アンテナ," 電子情報通信学会論文誌 B, vol.J100-B, no.9, pp.738-747, 2017.
- [8] 四戸雄介,羽石操,木村雄一,"スリット装荷マルチバンド 平面アンテナの放射特性,"電子情報通信学会論文誌 B vol.J89-B, no.9, pp.1589-1602, 2006.

Abstract

Design of 920MHz band electromagnetic coupling feeding antenna is performed for the gas smart meter. The antenna is composed of a feeding patch with length of less than $\lambda/4$, and a parasitic patch with length of $\lambda/2$ which is electromagnetically coupled by the feeding patch. Assuming that a parasitic patch is mounted on the dielectric cover of the gas smart meter, the efficiency improvement and design method of the antenna using the area and height of the cover are discussed.

Key words

Wi-SUN, Antenna, Electromagnetic coupling, Parasitic element, L-probe feed, Smart meter